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MOTION OF A SHIP...IN A SEAWAY
ERRATA SHEET
Pel 1.8 + 9 Read "should be a small oscillation;"'
p. 6 1. 12 " "Krylov,"
ps 8 1. 15 “referred.™
p; 13 ;; 1 "preassure™ :
ys 3 021 and 011 J
l, 6— r; lnstead of n, @
‘ 1. 1l .Oll&u(x,y,z) :
pe. 14 1. 6 "pesulth
Pe 17 1. 1 read "dix in (1.18)
p. 18 1. 21 replace "where" By "whose
Pe 19° 2nd line of equation (1.233 replace
2¢g031 by 2pg931
p. 22 In equations (1.27) and (1.28) replace p by p
P, 23 1. 2 rea& "the y"
i. 21 " Thut!
ps 27 1. 6 insert phrase "of the water'" botween : }
"interactions" and "with" A
p. 32 1. 12 read "that"
p. 43 1. 6 ') ]
p. 51 1. 3 y=0 1
p. 54 1. 6 Ko (%,7,2) . ;
P. 56 1. 7 read "sgtisfies." QEI %
Pe 64 1. W0 insert "oos" between ¢ & and bbacket. '
1. 13 |

S

read "then" instead of "there'.
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THE MOTJON OF A SHIP, AS A FLOATING RIGID BODY,
N A SEAW,

“

“by J. J. Stoker and A. Se Peters

1. Introduction and summarye. |
The purposo of this roport is to develop the mathematical

theory for tho motion cf a ship, to be treated as a frecly floating

rigid body under the action of given external forces (a propeller
thrust, for exemple), undor the most general conditions compgxible
with a lincar theoory and the assumption of an infinite ocoane |
This of course requirocs the amplitudc cf tho surface waves to be
small and, in goeneral, that tho moticn of tho water shculd be
small oscillaticns near its rest position of oquilibriumj it also
roquifes the ship to havo tho shapo <f a thin disk so that it may
have a translatory moticn with finite volocity and still croate

only small disturbancos in tho wetore In addition, tho motion of

tho ship 1tsolf must bo assumod to consist of small oscillaticns
reclativo to a uniform translaticn. Withinhthoso limitaticns,
howovef, tho thoory to be proscntod is quite goneral in tho sonsec
that no arbitrary assumptions about the intoraection of the ship
with tho wator arc mode, nor about the character of tho ccupling
betweon tho differont dcgroos ¢f frocdom of the ship, nor ebout
the waves prosent on tho surfaco of the sca: tho combined systom
of shlp and sea 1s treated by using tho basiec mathomatical thoery
of the hydrodynamics of a noneturbulont perfoct rluié.
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For example, ,the theory presented here would make it possible to

determine the motion of a ship under given forces which is started

°
e 3

with arbitrary initiel conditions in a sea subjJected to given sure

4 face pressures and initial conditions, or in a sea covered with
:j waves of prescribed charecter coming from infinity, f

It is of course well known that such a linear theory for | ?;

the non-turbulent motion of a perfect fluid, complicated though éj@u
it is, still does not contain all of the important elemonts needed ;
for a thoroughgoing discussion of the practical piroblems involved. ; :';
For oxample, it ignoros the boundary=laycr offects, turbulent
effects, the existonce in gencral of a wake, end other important
effects of a non linear characteres Good discussions of thcse
matpers can bc found in pepers of Iunde and Wigley [6]*and Hevulock
A [3]e Novertholecss, it soems oclcar that an approach to tho problem
of predicting mathématically thce motion of ships in a secway under

quite genoral oconditions is a worthe-while enterprise, and that

a start should bc made with tho problom even though it is rocoge
nized at the outsct that all of thc important physical factors
can not be taken into account. In fact, tho theory prcscntod hore

loads at onco to a4 number of important qualitative statoments

without tho necessity of producing actunl solutions - for cxample,

wo shall see that cortain rc¢sonant froquencies appear quitoe

naturally, and in addition that thoy can be ealculated solcly
. with roferenco to the mass distribution and the given shapo of
tho hull of the shipe, Intcrosting obscrvations about tho charcotor

s
| iXa . ‘.
€

of tho coupling betweon tho various dogroos of frecdom, and sbout - ;P
*Numbers in square brackets refer to the bibliography at the end .
of this report,. IR
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the nature cf the interactic:n betwesn the ship and the water, are
alsc obtained simply by examining the equations which the thuory
yields.

In order to describo the thecry oand results to be worked out

in later secticns of this report, it is necessary to intrcduce our
notation and te go scmewhat intc dotrilse In Fige lel the dispo-

sitiocn of two of the coordinate systems used is indicated. The

Y
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Y » X
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Figo 1019
Fixed and Moving Coordinate Systems

system (X,Y,2) is a system fixed in space with the X,Z-plane in
the undisturbed free surface of tho water and the Y-axls vertically

#*
upwarde.

*This chcolce of axis is nut the conventional one; the Ze~axls 1is
ususlly chosen as the vertical axise It was made becnuse the
authcrs are accustomed tc working with a variety of differont
water wave problems; and the choice made here seemed to tliem to
be reascnebls from & genernl point of view because of the large
number of existing two-dimensional prcblems of intersst in which
one thzn neturally chcosss the y-axis as vertlical axis, ccupled
with the fact that the use of the symbol 2z as a ccmplex varlqble
is nearly universal,
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A moving system of coordinatoes (x,y,z) is introducedj in
this system tho x,gzeplane is assumed to coincide always with the
X,Z=plane, and 1ts y-axis 1s assumed to contain tho centeg of
gravity (abbroviatod to cege in tho following) of the ship, Tho
courso of tho ship is fixcd by tho motion of the origin of tho
moving systemj it 1s thon convenient to introduce the spced s(t)
of the ship in its courso: the spced s(t) is simply tho magnitude
ef the vector roprescnting the instantaneous volocity of this
points At ths samoe time wc introduce the angular spccd w (t) of
tho moving systom rolative to the iixed system: ono quantity fixes
this rotation becausc tho vertical axes remain always parallol;

The cngle a(t) indicated in Fig.l.1is dcfined by

/

t
(1.1) a(t) = [ w(t)at .
0

In order to doal with the rigid body motion of tho ship it is
convcnient, 28 always, to introduce o system of coordinates fixed
in tho bodye Such a system (x!,y!,z') is indicatod in Fige 1.2
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Tho x!',y'=plano is assumed to be in tho foree-and=aft planc of |
symmotry cf thc ship!s hull, and the yleaxis is assumcd to contain
the c;g; of tho shiﬁ. The moving systom (x!,r!,z!) is assuwcd to
coinecido with tho (x,y,z) system whon Fha ship apd tho wntor aro
at rest in thoir eéuilibrium positionse The ce.ge of th¢ ship will
thus coircido with tho origin of tho (xt,y!,2') system only in
casc 1t is at the level of tho vquilibrium watcr line on tho ip;
we thercforc intrcduce the constant v os tho ccordinate cf the

CeZe in tho primed coordinate systom at such an instant,

T» of tho water is assumed to be given by o velocity
potontial“ Q(X,Y,Z;t); it in turn is thorefore to be detormined as
a solution of Laplaco's oquution sctisfying appropriate boundar§

conditions at tho frec surface of the wator, on tho hull of the
ship, at infinity, ond also initial conditions at the timo t = 0,
The boundary conditi~ns on the hull of the ship cloarly will dopond

on the mcti-n of the ship, which in 1ts turn is fixod, through tho
differcntinl cquaticns for the motion of a rigid bedy with six
degrees of frocdom, by tho forces acting on 1t « including tho
prossuro of tho watcg = and its pcsition and veloelity at the timo
t = 0. As wo have alroandy statud, we moke ne furthor rostrictive
assumptions oxcoept those necdod t: lincarize the problem;

Boforc discussing the lincarization wo intorpclato 2 brict
discussicn of thc rclation ~f the prosont work to that of othor

writers who have discussed tho problem of ship mations by mcans

B -

- .
Thus it is impliod that we doal with an irrotationsl motion of a ‘
non=viscouss fluid, {
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of the lincar thoeory of irrotational waves. The subjeet has a
lengthy history, boginning with Micholl [8 ] in 1898, and continue
ing over o long period of yoars in a scquonece of notablc papcrs by
Havolock, boginaing in 1909, This work ;s, of course, includcd as
n specinl cnsc in what is proscntcd hurue Extensive and up-to=iate
bibliographies cnn bo found in tho papcrs of Weinblum [10] and
Lundo[7]e Most of this work considers tho ship to bo held fixod

in space whilc thc water streams pestjy the questicn of intorost

[
¢}

then the calculation <f the wave resistance in its dopoenderico
on the form c¢f the shipe Of particular intorcest to us her: care
‘papors of Xrylov [5], Weinblum and St. Doniémf9], and Haskind [1],
2ll of whom dcal with less restrictod typos of motions Krylav
secks tho motion of tho ship on the assumpticn that the prossuro
on its hull is fixed by the prescribed motion of the wrter without
roferenco to the back effect on the motion of the water induccd by
the moticn of the shipe Woeinblum nnd 3te Denis ompley o ¢ mbined
tueoretical and ompiripnl appronch tc the problom which invrlvos
writing down oquntions of motion of the ship with coofficicnts
which shcul? bo in part deterained by nodol oxperimonts; it is
asswnod in additicn thet there is no coupling botweon the aifforant
degroos of frcodom invelved in tho goneral mction of tho Shiéo
Haskind attacks the problom in the samc dogroc of goneranl try

and under the smo goncral assumptions, as tho authors; in tho
ond, howevor, Haskiqd derivcs his thoosry eomplotoly only in a

certain spocinl casee Haskindts theory 18 also nct the sarmo s




tho thoory prosented horo, and this is cousod by a fundamentall

b

difference in tho proceduro uscd to derive ‘tho linear thoory froxp

tho underlying, basically nonlinear, theorye Haskind dovolops his
thoory, in the time-honorod way, by assuming that ho knows a pri.ori‘
the relative orders of magnitude of tho various quantities inwlveds Iy
Appliocd mathomaticions are not often decoived in following such @
proccdure, but the presont case is oxceptional both beeausc off
1ts comploxity and bceause of the fact thut it is esscntial to .:{3:
consicer torms which are not all of tho same ordere The cuthors ‘ i
Aalso tried. t> attack the problem (withcut boeing aware at the t=irao
of the existonco cf Haskingl's work) in this same woy, but 1ny:xri.-
ably arrived at forrmulaticns which seemod to be incinsistonts 4
Conscquontly thoy felt it noecessary to proceed by a formal dev-el ope
ment with rcspoct to o small paremcter (essonticlly the breadthe

lcngth ratio of tho s:hip); in doing so overy quuntity was dcve logped

systematically in a formal serics (fer a similar typo of discu ssdom

see Fo John [4])e¢ In this way a cuorroct theory should bo sbtadned,
assuming thc eonvergenco of tho scrios = an? the authors sic neo

reascn to doubt that the scrics would convorgo for sufficicntly

small values of the parameters Asi“c from tho relative sofoty
cf such 2 method = purchased, it 1s truc, at thce prico of makimy ‘i}

rathcr bulky calculatinns = it has an additiznal acdvantago, .09

it mnkcs ?ossiblc a ccaslistent procodurce for deterniining rny

r dosircd highor crder corrcotions, It is nct coasy to compare . S

. Haskind's thocry in dotail with tho thoory prosontod horee Howwwnr, y "'

| Y
£




it oan be statcd that cortnain terms, cnlled damping terms by
Haskind and considered to be of importoneo by him, arc torms that
would, in the thecry prosehted hero, be of higher order than any‘
of thoso rotaincd by the authorsy cconscquontly tho authors réol
that ccnclusions drawn from such torms may well be illusory unloss
some ovidence 18 rrosonted which shuws those torms to bo tho most
important among the véry largo numbor of differcnt torms of that
ordor which would cccur in a formal dovolopmente A morc nreeisoc
statement cn this point will bc made lator.”

The proccdure followed herc begins by writing the oquation
of tho shipt!s hull relativc to the crordinate system fixod in tho

ship in the form
(102) zt! = : ﬁh(’:"y') ’ 2! 2 0 f)

with B a small &imonsionlcss paramotore This i1s tho parmmotor
rofor od to above with rcspect to whieh nll quantities will bo
dovolopeds In particular, the velocity potential §(X,Y,25t38) s

£(x,y,25t38) is assumod to possess tho dovelupment
(1e3) £(x,y,25t38) = BE, (x,7,25t) + aaﬂz(x,y,z;t) + eeoee
The frec surface olovation n(x,23tjf) and tho speod s(tjB) anc

angular volceity w (t3B) (cf. 1.1) aro assumed to have the

develcpments

2
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(1ely) n(x,25t38) = Bny (x,25t) + Bony(x,2jt) + oo,
(145) s(tjp) = 8 (t) + Bs (L) + oo ’
(1.6) w(tiB) = w (t) + Buy () + soe .

Iz

Finally, the vertical displacement yc(t) of the center of grévity
and the angular displacements el, 92, 03 of the ship with respect

to the x,y, and z axes respectively are assumed given by
(1.7) O (t3B) = B 6y, () + 8% 0y, (6) + 00r, 1=1,2,3,
(1.8) Yo (t38) = ¥ = By (t) # poy (t) + o0

These relations imply that the velocity of the water and the
elevation of its free surface are small of the seme order as the
"slenderness parameter" B of the ships On the other hand, the
speod s(t) of the ship is assumed to be of zoro ordor, The othor
quantities fixing the motion of theo ship'are assumed to bo of.
first order, excopt for ()(t), but 1t turns out in the end that
“’o(t) vanishos so that w 1s also of first orders Tho quantity
¥¢ in (1.8) was dofined in connoction with tho desoription of
Figele2; it 18 to be noted that we havo chosen to expross all
quantitios with rcspoct to the moving coordinate system (x,y,z)
indicated in that figurocs Tho formulas for changcs of coordinatcs
must be used, and thoy also are to bo dovoloped in powers of 8;
for oxamplc, tho cquation of the hull rclative to thc (x,y,z)

coordinato system 1s found to be




2 + By x = B8 4 (y-y)) - Gh(x;y) + %900 =0

after developing and rec jooting scoond and highor ordor terms in f,

In marino enginecring therc is an accepted terminology for
deseribing the motion of a ship; wo wish to put it into rclation  -]£
with the notation just introduceds Tho angular displacemunts a?e %ﬂ
named as followss ©, 1s the rolling, ©,+a is tho yawing, ond f&?‘
©, is the pitching oscillation, Tho.quantity 8,(t) in (1.5) is
called the surge (ie.cs, it 18 the small fore-and=aft motion rola=- ‘ff
tive to tho finito spood 8 (t) of th ship), while ¥, fixes tho '
hoave. In addition, thore 18 the sido~wis¢ displacumont (in first
order 1t might bo denoted by Bz,(t)) roforred to as the swayj this

quantity, in lowest order, can be calculated in tocrms of so(t) and

thc anglo a defined by (l.1) in torms of w(t) as follows:

t
(1.9) B, (t) = s a = ps, [ w (t)at,

since u%(t) turns out to v:nishe 1In ono of thc problems of most

practical intcrest, 1.c. the problcm of = ghip that has bcocn moving

for a long time (so that all transicnts hevo disappeared) under

EX

a constant propuller thrust (considored to be simply a fcres of

V‘x‘!*‘x—“"—*‘-.; e Wi
R i
\

constant magnitudo parallol to the kocl of the ship) into o scaway
consisting of a given system of simplo harmonic prcgressing waoves
of given frequency, onc expects that tho displacemont tompononts
would in general be the sum of two torms, one indopehdonf of tho

time and repruscnting tho displecomonts that would arise from

L - e A
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tc evaluate ﬁx on the froo surface y =1 in ordor to oxpross tho

wlle

motion with uniform volocity through o eclm soa, tho other a torm
simplc harmonic in the time that has its origin intho forcos
arising from the waves coming from infinity. On account of the
syrmetry of tho hull only twe displacomonts of the first category
would differ from zorc: one in the vertical displacoment, lece
the hoave, the other in the pitching angle, 1.0 tho angle 93.
Tho lattor twe displacements apparontly are rcforrcd tc as the
trim of thc ship. 1In all, then there would bo in this case nine
quantitics tu bo fixed as far as tho motion of tho ship is cone
cerncd: the amplitudes of the oscillations in each of tho six
dogreoes of frecdom, tho spoed 8,s und the twn quantities dctor-
mining the trin.

Wo procecd to give a summary of thc thcery obtained when tho
sories (le2) to (1.8) arc inserted in all of tho oquaticns fixing
the motion of thc systom, which includes both the differcnticl
equatiocns and the boundary conditions, and any functions involving

f are in turn dowoleoped in powers of Be PFor examplo, one noeods

boundary ccnditisns therej cne calculates it as follows (using

(1.3) and (1l.4)s - !

(1.20) ;!x(x,nuz;t;p) = p[ﬁlx(x,o.z;t) +vv!1xy(x,o,z;t) + ove)

‘' [

+ 52[’.‘2:,t .,.,waxy + oe0] + o0s

= ﬂflx(xvoazit) + Balnlﬂlxy(x.oolit) + ﬂax(xaoozit)] + 0%,

Wi



We obsorve tho important fret « to which roforonce will be made
later « that the coeffieiocnts of the powcrs of @ are evaluatod
at y = 0, 1.0 at the undisturtod equilibrium positicn cf tho
free surface of the watere Tho ond rcsult of such caleculations,
earried out in such a wey as to inecludo all torms of first order
in B 1s cs follows: The differontial equation for #1 is, of

coursc, the Laplace equations

(1.11) ' Brxx * Prgy * P1uz = O

in thoe domain y < 0, 1.0 the lower half=space, oxcluding the
pleno arca A of the x,y=planc which is the orthogonal projcction
of tho hull, in its equilibrium position, on tho x,y=plonce The

boundary conditions on dl are
(4., = 8, (B, =851 + (Wy+0,))x = 8y, (y-31), on 4,
(1.12) !
{
{

"612 = -8 (h "‘021) + (b)l"'ezl)x - oll(y-y')’ on A

in which A, end A_ rofor to the two sides gz = 0+ tnd z = 0_ of

the plano disk™As The boundory ccnditions on the froe surface are

| gy + 5.6, = b1y =0
(1613) at y = 0,

lly = 8Max Mg * ©

o~
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The first of thesc results from the condition that the press re | f}

vanishes on the free surface, thc second arises from the kinematic

free surface condition. If Bg;ul,¢21, and ¢11 were known functions

of t, these boundary conditions in conjunction with (1l.11) and

appropriste initial conditions would serve to determine the functicn P

#, and n, uniquely; i.e. the velocity potential and the free surface o]
1 1 _ «

elevation would be knowne In any case, the function {1 - which we
repeat, fixes the lowest order term in the development of the

velocity potential g = could be in principle determined, bocause

of the linearity of the probler, as a linear combinaticn cf harmonie

functicns Wi having 8,0ty + 021,921 end 011 as time~dependent

coefficlents:

(Le14) £ (x,7,25t) = 8 ¥, (x,7,2) + oy + 021)wz(‘x.y.z)+021'w3(x.y.z)

+ ollwh(x’y’Z) + WS(x’y’zit)°

The harmonic functicn WS wculd be determined through initinl cone
diticns and the conditicn fixing the wave train cbming from @ =
that 18, it contains tho pert of the solution arising from the
non=hémogeneous conditions in the prcblem,

Before ccntinuinglto describe the reiaticns which determine
the time-dependent coefficienﬁs in (lely) as well as tne cther
unkncwn functicns of the time which fix the moticn of the ship, we
digress et this point in crler to discuss some ccnclusions arising
from our developments and cconcerning twc questicns which recur

again and again in the literature. These issues cecnter arcund tho
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question: what is the correct marner cf satisfying the boundary
conditicns on the curved hull of the ship? Michell emplbyed tho
condition (1.12), noturally with 911 = 921 =, &0, on the basis
of ﬁhevphysical argument that sohx reprecscnts the compenont of tho
veloeity of tho wator normel to tho hull and sinco the hull is
slendor, a good apprcximation would rec. ult by us;ng n8 boundary
conditicn the Jump.condition furnished by (l.12)s Havslock and
others have usually fcllowed tho samc practico., However, <ne rinds
constant criticism of tho rosulting thoeory in the litoeraturc
(particularly the ongincering literature) bocause of the fact that
the beoundary c-nditicn is not sotisficd at tho actual positicn of
tho chip's hull, and various propcsals have boen made to improvoe
the approximaticne The suthors fecl thot this criticlsm 1s beside
tho pcint, sincu tho cohditieh (1412) is simply tho consequence of
a roascnable lincarization of the prcbleme To toke sccount of the
boundery condition et tiic actual positi-n cf the hull weuld, of
course, oo mere accurntee-= but then, it wculd be neccessary to decl
witz the full nonlinear problem and mako surce that all of tho
esscential errrcetion terms of a2 given ~rder wurc ﬁbtainod.ﬂ In
particular, it wenld be nocessary to oxwmine the higher order
terme in thce conditions ot tho froc surface « aftor 211, tho ccne
ditions (1.13), which aro also usod by licholl ond Havelock, are
satisfiod ap yls 0 mnd nnt on tho actual displece? pcsition of the

froe surfcooe Onc way to obtain a more accurate thocry wouléd be,

of ecourso, to carry out the perturbation schemc outlined koro to

higher order torms,

‘:'
|
I
|
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Still cnother point hns come up for frequent discussion (cfe,
for oxample, Lunde and Wigley [6]) with reforcnco to the bcundary
conditizn cn tho hull, It is fairly commen in the literature to
refer to ships of Michollts typo, by which is moant ships which
aroe slendor nct cnly in the fﬁro-and-nrt direction, but which are
nlso slondor in the crosse-scctiocns at right angles tc this diroce-
tion (cf. Figels3) so that hy, in our notation, is smalle Thus
ships with a rather broad bottom (efe Figele3), or, as it is also
put, with a full midesection, ar¢ often considored as ships to
which tho presont theory dces not applye It 1s truo that hy may

A N
¥ Y y

(a) ' (b)
Fige le3e

Ships with full and with narrow mid-seceticns

becomo rathor large near tho keel of tho ship for ccrtain typos
of cross=sections, but nuvortheless the linearizaticn carricd ocut
‘abovey shoul? remain valid since all that is noeded 4s that tho ship

should not orcate too large disturbances, and this conditicn is

LL..; Seee
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guarantoed by taking a long, slondor ship., (It might alsc be noted

§

that hy occurs in our theory only undor integral signs.) In fact, -ﬁ%ﬂé
' A

there orc oxpsrimoental results (efe Havelock [3]) which 4indicato S

that the thcory is just as acecuratc for ships with a full nicde
y sceticn as 1t is for ships of Michcll's typo.
After this digrossion we roturn cnce morc to the Ceserijtiom
of the cquatiins which dotormine thc motion of tho ship, and which

ariso from dovcloring the equaticns of motion with rcsrect to 8

end rctaining ~nly tho tecrms of ordor B and 92. (Wo obscrve again
that 1t 1s nccessary tc consider tcrms of beth orders.) In cdoing
so tho mass M of tho ship is givon by M = My, with M a constant,
since we assume tho avorage density of the ship tc be finito and
its volume 1s of course =f order fe Tho moments of inertic aro
also of orcdoer B The pronrellor thrust is assumcd toc be a forco cf
megnitudo T acting in the ncgative x'=dircetion and in tho
x!',y'=planc at 2 point whose y'=ccordinato is =~3; the thrust T is
cf order Bz, sipce the mass is of order 8 and acceolerstions aro
also of crdor Be

Thoe terms of order B yield the following c¢rrn itions:

(1.15) 5,=0,
(1.16) 208 ; BhA = M,Bg ,
(1027) ° i xBhcA = 0 , ﬁ




(1.18) '{ [(’glt"o'{ix”: A =0 , .
: (1.19) i [x(llt"oflx)]: dg‘aAo ,
. (1.20) { [y(hy =8 fp, )0 ca =0 :

The symbol ( ]: ocourring horc means that the jump in the ‘J«ﬁ
quantity in brackcts on going from tho‘positivo tc the nogativp
s1do of the projoctod arca A of the ship's hull is tc bo token, L{
The variables of intograticn arc x and ye The cquation (1.15)

states that thc tcrm of ordor zoro in tho spced is a ecnstant, and

. henco the motion in the x=directicn 1s a small oscillation rola-
tive to a motion with uniform volocitye Equaticn (1.,16) is an
cxprossion «f tho law of Archimecess tho rest position of cqui-
librium must bo such that the woight of the ship just equals theo
woight cf thc water 1t disjlacese Equaticn (1.17) cxpressos
anothcr law of cquilibrium of a floating budy, f.0. that the ccnter
of buoyancy sh-uld be cn thu samo vertical line as the contor of
gravity of thc shipe Tho remaining throe equations (1.18, (1,19),
and (1620) in the grcup sorve to dotormino tho displacemunts

.

199 d21’ andw,, which cceur in the beundary conditicn (l.12) for

the veloc.ty potontial gye As wo have already remarked, the volo=

‘ city pctontial ﬁl can bo writton in the form (1.14) as a lincar
combination of harmonic functions with theso unknown and timoe

depondont displacomonts as coefficiontsj insortion in oquations
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" (1318), (1.19), and (1.20) cloarly lcads to a coupled systom of

ordinary difforcntinl equaticns with constant coefficienté for
511, 051 undvu&, which is of second order in 911,921, and of
first ordor in aﬁ (thcugh also of second order in the angular
displocomont a, gtnl(t)dt). Tho coofficionts of those difforcne
tial equations are, of course, obtained in terms of intograls cver
A which involve tho known functions wi(x,y,ot,t). If tho spoud

s, = conste (which cccurs in (1414)) is known, it follows that

tho systom of differontial ocquaticns for @11(t), 921(t), end wi(t)
would yiold thesc displacomonts uniquely once propor initial
conditions aro proscribods Wo shall sce in a moment that S, is
fixed by a condition that is indepundent of all tho unknown dise
placemonts = in fact, it deponds only on the propeller thrust T
and tho shape of tho hull = and consequontly wo have obtained a
rosult that is at first sight rather surprisings tho motion of

tho wator, which is fixed solely Ly [1, is ontircly indorendont

of tho pltching displacement 64 (t), tho heave y (t), and the |
surge sl(t), 1ece of all displacomonts in the vertical plene
oxcept the ecnstant forward spoed 8.e A 1littlo rofleecticn,
howover, makos this rosult quitc plcusibled Our the ry is bascd

on tho assumption that the ship is 2 thin disk whero thicknoss

is a quantity -f first order dsposcd vertically in the water,
hence only the finite displacemonts of tho disk parallel to this

vortical plane -'croatzoscillattuns in the water that are of

socond order at leaste On tho othor hand, displacomonts of first

=

twf;b-'m '




ordcr of the disk at right anglos tc itself will croate motions in
tho wator that arc tlso of first crders Ono might seck to‘doscribo
the situation crudely in the following fashione Imagine a knifo
blade hold vertically in the watore Up=and-down motions of tho
knifo ovidently produce motlons of the water which eroc of a quito
differcnt ordor of magnitude from motions procduced by displacoments
of the knifo perpondicular to its blado. Strecss 1s lald cn this
phenomoncn horo bocausc it helps to promcto undorstap@ing of othor
oecurronces tc be doscribed later,

Tho terms of second order in B yleld, finally, the following

ccnditionss
| - f +
(1.21) M8 =p ] [ (f)y = 84,01 aa + T,

(1.22) M1§1 = =208 { (y1 + x931)hdx

+ 0§ {20,008 m fo 1 4000 )4y om0 ea,

(1.23) I;0q; = -2p3931 { (y=y{ )hda - 2p8y4 Isgxhdx

- 2‘5°31 { xhdx + 1T +p { [xhy-(y'yé)hx][ﬁlt'soﬂlx]:dA’

We noto that intograls cvor tho projocted watcrelino L of the ship
in its oquilibrium position occur in addition to intograls cvor the
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vortical projection A of thu ontirc hulls The quantity 131 arisos
from the rolation I ® Bl for tho moment of incrtia I of the ship : '

with roépoct to an axis through 1ts c.ge parallcl to the z'«axis,

The equation (1l.21) dotormines tho surge 519 and also the spoed
8, kor, ir one wishos, the thrust T is determined if 8, 1s assumed '_%5
to be given)s Furthormore, tho spoed s, 18 fixed sololy by T and
the geomotfy of the ship's hull, This can bo soon, with reforonce
to (lell4) and tho discussion that acoompanies it, in the fcllowing *?
waye If w,, 91; and 92 are constants, then they mst, as one
could show, be identically zero; honce the torm 8 ¥, in (lelk) is
the only torm in 51 that is indepondent of te It thorefore

dotermines T upon insortion of [1 in (1,21)¢ This term, howover, _ &
is cbteined by determining the hariionic functién wl as a solution
of thc boundary problom for dl in tho épocial case in which

-611 = °él = w, = 0} henco, as ono sees from (1.12) and (1.13),

¥, 1s fixed by 8_ and hx alonee In fnct, the relaticn botwccp 8,
and T is oxactly the samo relation ns was cbtained by Micholle

(It will bo written down lators.) In other words, the wavo rosise
tance 18 now scon to depond only on tho dbasic motion with uniform

spcod of tho ship, and not at all cn its small oscillati:-ns rclative

to that motioh, If, thon, offects on tho wave rosistance duc to
the oscillation of the ship are tc bo cbtained from the thoeory,
it will be nocossary to take aceount of higher order terms in order

to calculate thome Once the thrust T has boon doterminod the ‘%*
. oquations (1e22) and (1.23) form a couplod systom for tho dotermine : Q%s,,
e

ation of y, and 031, since ‘1 and 0,4 hgvo prosumably boon v w%?

5

e




determined previously, However, it 1s not quite correct to say that
the surge 8;, the hoave y;, and the pitching oscillation 031 ere
not coupled with the roll, yaw and sway since tho lattor quantitios
enter into the determination of ‘l' Thus our system is one in
which there is a great deal of crosse-oouplings It might also be
noted that tho trim, l.es tho constant values of yl'and 931 about
which the oseillations occur are determined from (1,22) and (1.23)
by the time-independent terms in those equations - including for
oxample, tho momont 1T of the thrust about the ce.ge

We havo now given the complotc formulation of our problem,
excopt for 1nitial conditions and conditions at ®, Boforc saying
anything about motheds for finding conoreotc solutions in spccific
cases, 1t hos some point to mention a number of conelusions, in
addition to thosc alrcady given, which can be inforred from cvur -
oquations without solving thoms, Considor, for oxamplé, the cqua-
tions (1le22) and (le23) for thu heavo ¥, and tho pitching oscillo=
tion 931, and make tho assumption that the integral ‘{ xhdx =0

{which means that the horizontal scction of tho ship at tho water
lino has 1ts cege on the same verticol as that of the whole ship);
If this conditicn is satisfiod it is immodiatcly soen that tho
oscillations 931 and y, arc not ccupled. Furthermore, thoso

equaticns are secn to have the form
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e st it = e - o

(2.25) - §, + A5y, = plt)
(1.26) 051 * 23 3 = alt)
with

2pg S hdx
(1.27) WL,

M

2pgl § (y-y.)nda + J x®nax]

(1028) lg = A L o

I3

It follows immcdiatcly that rosonanco is pcssible if p(t) has a

harmonic component of the form A cos(klt+B) or q(t) a ecomponcnt of

the form A cos(X2t+B): in other werds, ono could expoct exceptionally

heavy oscillaticns.if the spoed of tho ship and the sen way were
to bc such as to load to forced oscillations having froquoncics
closoc to thosovvaluos. One cbsorvos alsc that theso rescnant
froquoncios can bo computed without roforcnec to the moticn of tho
soa or tho shipt thoe quantitios 11,12 dopend only on the shape of
the hull.”

In spitc of the fact that thc linoar thoory presontod‘horo nust
bo used with coution in rolation to the actual practical prcblems

*rho equetion (1.27) can bo intcrprcted in thoe following way: it
furnishos thc froquoncy of free vibration of a system with cnc
dogroo of freedom in which the rostoring force 1s prcporticnal to
tho weight of water displacoed by a cylindor of crossesoction aroa

2 { hdx whon it is immcrsoed verticuzlly in water to a dcpth Ty
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oconcerning ships in moticﬂ, it still scoms likely that such

resonant frequencies would bec significant 1f heyhapponoed to

ocour in thc torms p(t) or q(t) with approciable amplitudes,
Supposo, for instance that the ship 1s mcving in a sca=wsy that
consists of a single train of simple harmonic progressing plnne
waves with circular frequency & which have their crests ct right
anglcs to tho course of the ship. If the speed of the ship 1s s
one finds that tho eirculsar excitation frequency of the disturbances

caused by such waves, as viowed from the moving coordinatc system

2
s
(x,y,2) that is uscd in the discussicn hore, is o + -%—- s 8ince
2 .
6

3 is 2n times tho reciprocal cf tho wave longth of the wave train
Thus if 11 and 12 should happen to 1ic ncar this valuc, a hoavy
oscillaticn might be expucteds Onu can also scu that a change of

course tc onc quartering tho waves at angle y would lcad tc a

2
circular cxcitation froquency € + 8,6 cos v ° %f and naturally

this wculd have an effact on thce amplitudes of tho r05pcnso;

It has alrcady beon stated that tho work prosontod hero 1is
rclatod to work publishod by Haskind [1] in 1946, ond it was
indicated that tho two thecries Aiffor in scmo rospoctse YWe havo
not mace & comparison of the two thcorios in tho goncral case,
which would not be oasy to do, b t it is possiblc to mnke a comparie
son rathor easily in the spocial casc treated by Haskind in dotaii.
This 1s the spocial case trecetod in tho second of his two papors
in which the ship is assumed to oscillato only in thc vertical

o5 e
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plane = as would be possible if the sea-way oonsisted in trains of

plané waves all having their crests at right angles to the course of

the ship. Thus only the quantities sl(t), yl(t), and 931(t), in
our notation, would figure in fixing the motion of the ship,
Haskind treats only the displacements yl(t) and 931(t) (which are

denoted in his paper by 4(t) and y(t)), for which he finds differ=

ential equations of second orderj but these eguations are not the
same as the corresponding equations (1,22), (1.23) aboves One
observes that (1.,22) contains as its only dorivative the second
derivative }; and (1.23) contains as its sole derivative a term
with ssl; in other words there are no fipst derivative terms

at all, end the coupling arises solely through the undifferentiated
terms, Haskind's equations are quite different since first and
second derivatives of both dependent functions occur in both of

the two equations; thus Haskind, on the basis of his theory,

can speak; for example, of damping terms, while the theory pre-
sented here does not yiocld any such terms. The authors fecl that
therc should not be any damping terms of this order for the follow-
ing reasons: In the absence of frictional reslstancoes, the only
way in which onurgy can be dissipatcd is through the transport of
energy to infinity by means of out=-coing progressing waves; How=
ever, we have already given what seom to us to be valid rcasons

for biclioving that the oscillations that consist solely‘in dise-
placements parallol to the vertical plane produce waves in the

water with cmplitudes thet are of highor order than fhose considered

s X
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in the first approximation. Thus no such dissipation of energy
would occure. In any case, our theory has this fact as one of its
consequences. Of course, it does not matter too much if some

terms of‘higher order are included in a perturbation theory, at
least if all the terms of a certain given order are really vresent:
at most, one might be deceived in giving too much significance to
the higher order terms, Haskind also says, however, and we Jjuote
from the translation of his paper (=see page 59): "Thus, for a

ship symmetric with respect to its midship section ...;..., only
in the absence of translatory motion, 1.6; for S, = 0, are fhe
heaving and pitching oscillations independent." This statement
does not hcld in our versior®of the theorye As one sees from
(1,22) and (1.23) coupling occurs if, and only if j.xhdx $ 0,
whether So vanishes or not. In addition, Easkind gbtains no
resonant frequencies in thesé displacements because of the presence
of first-derivative terms in his equations; the authors fecl that
such resonant freoguencies may well be an important feature of the
problem. ‘

We turn next tc a brief discussion of msthods of golving the
problems formulated sboves The difficulties ere for the nost.part
concentrated in the problem of determining the first appfoximation
#1(x,y,z,t) to the velocity potential. The discussicn above assumed
that ‘1 had in some way been determined in ﬁhe form (1.24) by
solving the boundary value problem posed by (1.11), (1.12), (1,13),
and appropriate conditions at tho time t=0 and at @ In gencral,

an explicit solution of the problem for ‘1 - in terms of an integral

AT
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representation, say - seems out of the questicne. In fact, as soon
as rolling or yawing motions occur, explicit solutions are unlikely
to be founde. The best that the authors have besn able to do so
far.in such case:s has been to formulate an integral equaticn for
the values of 51 over the vertical projection A of the ship's huli;
this method of attack, which looks possible and somewhat hopeful
for numericnl'purposes since the motion of the ship requires the
knowledge of dl only over the area A, is under investigation.
However, 1f the motion of the ship is confined to a vertical plane,
so that @, = 911 = Oél = 0, 1t is possible to sclve the problcems
explicitly. This can be sven with roference to the boundary
conditions (1.12) and (le.13) which in this casc are identiccl with
those of thc classical theory of Michell and Hevelock, and hence
permit an explicit solution for dl which is giﬁen later on in
secction L. Aftcr ﬁl 1s determined, it can be inserted in (1.21),
(1.22), snd (1.23) to find the forward speed S corresponding to
the thrust T, the two quantities fixing the trim, and the surge,
pitching, and heaving oscillations. In all, .s8ix quantities

fixing the motion of the ship ere determined.

The thcory developed in this report is very general, and iﬁ'a
therefore could bo applied to the study of a wide veriety of
different problemse. For sxemple, the stability of the oscillations
of a ship could be investigated on a rational-dynamical basis,
rather than as at precsent by assuming the water to remain at rest
where the ship oscillates. It would be possible in prineciple

to invcatigate theoretically how a ship would move with a given

v
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rudder setting, énd find thc turning radius, angle of heel, etce
The problem of stabilizetion of a ship by gyroscopes or other
devices could be attacked in o very general way: the dynamicel
equations for the stabilizers would simply be included in the
formulation of thc problem together with the forees arising from
the intoractions with the hull of the ship.

In Sec. 2 the generel formulation of the problem is given;
in Secs 3 the detalls of the linearizaticn process are carried
out; and in Scc. L a’solution cf thc problem 1s given for the case
of purely vertical motion, including a verification of the fact
that the wave resistance is given by the same formula as was

found by Michell.

. 2 General formulation of the prcblem.

We derive here the basic theory for the metion of a floating
rigid body through water of infinite dspthe The wator is assumed
to be in motion as the resvlt of the moticn cof the rigid body,
and also because Of disturbances at oo; the combined system con-
sisting cf the rigid body and the water is to be treated as én
interaction in which the motion of the rigid bedy, for example,
is determined through the pressure forces exerted by the water on
its surface. We assume that a velocity potuntlal exists., Since
we deal with a moving rigid bedy it is convenient to refer the
motion to varicus types of meving coordinate systems as wcll as
to a fixed cocrdinnte systems The fixed coordinate system 1is
denoted by 0-X,Y,Z. The X,Z-planc is in the equilibrium positicn
of the freec surface of the water, and the Y-axis is positive

e
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upwards. The first of the twc moving coordinate systoms we use
(the second will be intreduced later) 1s dencted by o=x,y,z, and
is specified by Fige lele The x,z-plane coincides with the X,Z-
plane (f.c. it lies in the undisturbed free surface), the y-axis
is vertically upward and containé the center of gravity cf the
ship. The x-axis has always the directioniof the hcrizontal
component of the velocity of the center of grevity of the ship.
(If we define the course of the ship as thec vertical projecticn
of the path of its center of gravity on the X,Z~plcne, then our
ccnventicn abcut the x=axis means that this axis is taken tangent
tc the shipt's courss.) Thus if Rc = (Xc,Yc,Zc) is the pocsition
vector of the center of grav%ty of the ship relative to the fixed
ccerdinate system and hence Ec = (ic’yc’éc) is the velocity cof
the cege, it follows that the x=-axls has the direction of the

‘vector U given by

> * » * »
(2.1) u= ch +z.J
> >

with I and J unit vectors along the Xeaxls snd the Z-axise. If
¥ 1s o unit vecter alcng the x~axis we may write

» -
(2.2) s(t)i =u ,
thus introducing the spccd s(t) «f the ship. For later purposss
we alsc intrcduce the angular veioclty vector o of the meving

ccordinat: system:

S Eosera

A T
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(2.43) a(t) = j wltiaT .
0

The equaticns of transformaticn from cne ccordinate syste

to the cther are

X = x cos atz sin.a+xc
(2.5) {X

Z = «x sin at+g cos a+Zc; z

x = (x-xc) cos a-(Z-Zc) sin a

we

¥ iy =Y

(X-Xc) sin a+(Z-Zc) ccs a <

By Q(X,Y,Z;t) we dcnete the velceity potential and write

(26) B(x,Y,2;t) = B(x cos a+z sin a+X ,¥,=x sin a+z cos a+Z ;t)

¢(x:Y9zft) )
In addition tc the transformation fermules for the coordinatcs, we

alsc need the formulas for the transformaticn cf various derivatives.

One finds withcut difficulty the fcllowing fermulas:

(Qx = ¢, cos a+$, cos a

(247) v Oy = 4y

sz =-¢ sina*f, cosa
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It is clear that grada P(x,¥,2;t) = grada $(x,y,2;t) and that ¢
is a harmcnie functicn in x,y,2z since § is harmonic in X,Y,2Z, To

calculate Q&is a little more difficult; the rcsult is
(2.8) !t"-' ‘(8+“z)¢x +UX¢Z + 41’; .

(To verify this formula, cne uses Qt = &xxt+6yyt+¢zzt+¢t and he
®

relations (2.5) together with s cos a = X, 8 sina = -20.)

The last twc scts of egquaticns makg it possible to express Ber=

noulli's law in terms cof ¢(x,y,zt);
(2.9) % +tgy + %(grad &)2 + (s+uz)$x -|¢x¢z - *t =0,

Suppcse new thet F(X,Y¥,Z;t) =0, is ¢ boundary surface

(fixed or mcving) and set
(2410) PF(x cos atees,¥,=x 8in atees;t) = £(x,y,25t) ,

so that f(x,y,z;t) = o is the eduation of the boundary surface
relative to the moving coordinate system. The kinematic con-
dition to be satisfied on such a boundary surface is that the
particle derivative %% vanishes, and this lsads to the boundary

condition

(2011) $xfx + 6yry + 4zrz = -,.(smz)rx + wxf, * L,
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relative to the moving coordinate system upon using the sappropriate -

transformation formulas. In particular, if y - w(x,z;t) = 0 is

the equation of the free surface of the water, the appropriate

. kinematic condition is

(2.22) -6qu + ‘y - ‘z“z = (stwzhn, - om, -,

to be satisfied for y = W o (The dynanic free surface condition
is of course obtained for y = N from (2.9)"by setting p = 0.)

!We turn next to the derivation of the appropriate conditions,
both lkinematic and dynamic, on the ship!s hull, To this end it
is convenient to introduce another moving coordinatg systenm
o! « x',yt,z' which 1s rigidly attackoed to the shipe It is
assumed that the hull of the ship has & verticel plane of syrmetry
(which also contains the center of gravity of the ship); we locate
the x!',y'=plene in it (cf. Fig 1l.2) and suppose that the y'-axis
contains the center of gravitye The o!-xt,y!,z! system, like
the other moving system, is supposed to coincide with the fixed
gystem in the rest position of eguilibrium at t=0, The center of
gravity of the ship will thus be located at a definite point on
the y!'~-axis, say at distance yé from the origin 0': in other
words, the systom of coordinates attached rigidly to the ship is
such that the center of gravity has tho coordinate (O,yé,o).

In the prescnt section we do not wish in general to carry
out linecarizations. However, since we shall in the end deal only

with motions which iavolvoe small oscillations of the ship relative
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to the first moving coordinate system o=~x,y,z, it is convenient
and saves time and space to suppose even at this point that the

angular displacement of the ship relative to the o=x,y,z system
»
1s so small that it can be treated as a vector W:

>

, ) » > >
(2.13) 0= 011 + 021 + 03k o

The transformetion formulas, correct up to the first order terms
>

in the components Oi‘or ®, are then given by:

x! = x + 93(y-yc) - 0,z

(2.1k) y! =y = (yc-yg) + 6,z - 03x

gt =2 + 023( - Ol(y-yc)

with Yo of coursc representing the ye-coordinate of'the center of
gravity in the unprimed systeome It is assumed tyat ¥ - yé is a
small quantity of the same order as the quantities °1 and only
linear terms in this quantity have been rctaineds (The verifi-
cation of (2.1Y) is e¢asily carried out by making use of thec vector-
product formula ; = :‘X‘;, for the small displhcement‘;.or a rigid
body under a small rotation :.)

The oquation pr the hull of the ship (assumed to bc symmctrical

with respect to the x',y'eplane) is now supposed given relative to

the primed system of coordinates in the form:




(2.,15) A ’ zt! = : Z(xt,y') ,

The equation of the hull rclative to the O=x,y,z-system can be

written in th: form

(2,16) z+0,x- o, (y-y!) - I(x,y) + I°az-93(y-y;)]§x(xn’

*I(Yc-y,',)-Olz*°3x]zy(x.y) =0, z' >0,

when higher crder torms in (yc-yé) and 01 arc ncglected, The left‘

hand side of this equction could now be inserted for f in (2.11)
to yield the kinematic boundary conditicn on the hull of the ship,
but we postpone this step until the next section.

The dynamical ccnditlions cn the shipt's hull are obtained
from the assumption that the ship is a rigid body in mecticn under
the acticn of the propeller thrust ;, its weight Még, and the
pressure p of the water onlits hull., The principle of the mcticn

of the center of gravity yields the condition

' d [ R »
(2.17) Map(st +3.J) = f p
S

»
By n we mean the inward unit normal on the hull. Our moving

L
coordinate system oe=x,y,z 1s such thsat %% = gk " and %g =.0,
so that (2.17) can be written in the form
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TR

> > o P [ [ ] »
Msi - Mswk + My § = pnds+7T-Mgj ,
S

(2.18)

with p defined by (2.9)e The law of conservaticn of angular

nonmentum is taken in the form:

4 » > > > P > > > >
(2.19) x¢ ] (R-R,) X (R-R )dm = jp(R-Rc)Xn dS + (Rp=R )X T .
M S

L g

The crosses all indlente vector prcducts. By R is mecant the

position vector cf the elemont of mass dm relative tc the fixed
coordinats systems ;c fixos the position of the cege ond ET

locates the point of oppliceation of the propeller thrust T, also
rclative tc tho fixed coordinate systeme We introduce ; = (x,v,2)
as the pogition vector of any voint in the ship relative tc tie

moving coordinate éystem mnd set
>
r

. I L
(2020) q = - ch ]

»
80 that q 1s a vector from the c.g. tc sny point in the shipe The

relaticn

- = = >
R +(wt0)x q

Y.
]

(2.21) c
holds, since w + @ 1s the angular velocity of the ship; thus
(2.21) is simply the statcment of a besic kinonmatic preperty of
rigid bodiese By usirg the last twc rcleticns the dyramical




condition (2.19) can be expressed in teims of quantities measured

with respect to the moving coordinate system o-x,y,z, as follows:

4 jf - » » > -
(2.22) 3, (r=y 3) x [(o + o) x (r=y,3)] dm

M - -

» ™ » >
= fp(p.ycj)y,n as + (Rp = RIX T .
S

We have now derived the basic equations for the mcotion of
the shipe. What wéuld be wanted in general would be a velocity
potential $(x,y,z;t) satisfying (2.1) on the hull of the ship,
conditions (2.9) (with p = 0) and (2.12) on the froe surface of the
water; and conditicns (2.17) and (2.22), which invclve ¢ under
integral signs through the pressure p as given by (2.9). In
additicn, therc would be initiél cenditicns and conditions at w
to be .satisficd. Detalled cornsideraticrn of these conditioans, and
the complete formulation of the prcblem of determininé ¢(x,y,2;5t)
under various ccnditicns will be postponed, hcwever until later on
since we wish tp carry cut a linearizaticn cof all of the ccnditicns
formulated here,
3¢ Linearizaticn by a formal perturbaticn procsdure.

Because of the complicated nature of cur conditions, it seems
wisc to carry cut the linearizatiocn by a fafmal development in
order tu make sure that all terms of a given order are retained; .
this is all the mcre necessary since terms of different crders

mast be considereds Thie linearizastion carried out herc i3 based
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on the assumption that thie motion of the water relative tc the
fixed coordinate system is a small cseillaticn about the rost
position cof equilibrium, It follows, in particular, that the
elevetion of the free surface of the water should be assumed to be
smalle We do not, hcwever, wish tc consider the speed of the

ship with respect tc the fixed coordinate system tc be a small
quantity: it should rather be cconsidored a finite quantity. This

. brings with 1t the necessity tc restrict the form cof the ship so

that 1ts moticn thrcugh the water does nct cause disturbances so
large as to viclate our basic assuription; in other werds, we rust
assume the ship to have the form of a thin diske In additicn, it
is clear that the vélocity of such a disk-like ship must ¢f neces~
sity‘maintain & directicr. that does nct depart tcc much from the
Plane of the thin disk if only small disturbances in the watsr are
to be created as a result of 1ts metion with finite specd. Thus

we assune that the equaticn of the shipt!s hull is given by
{3.1) z! = Bh(x',y*) , z' >0,

with B a small dimensionless parameter, so that the ship is a

~thin disk symmetrical with respect to tho x',y'=plane, and 8h

takes the place of & in (2.15)e (It might be noted in passing

that this is not the mcst general way to describe the shape c¢f a
disk that would be sultable fcr a lincarigaticn of the type corried
out here.) We have alrcady asswnred in the preceding secticn that

the moticn of the ship is a sriell osciliation relative to the moving

P’

e
S s
| A85. ¥ 3

[
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coordinate system oex,y,z = an assumption that, in fact, is made
necessary by our basic cssumpticns concernihg the linearization,
It seems reasonsable, thérefore, tc develcp all of our bagic

quantities (taken as functions of x,¥,2;t) in powers of B, as

follows:

(3.2) bx,y,25658) = Bd 2%, + 0r
(3.3) n(x,2;858) = puy + B2, + ouo
(34) s(658) =8+ Bay + 8%, + s,
(345) W(t;B) = + By + PAw, + uu
(3.6) 0, (t;8) = g0y, + 8%0,, + veu,
(3.7) Y, - T =6y, ¢ Bzya + o0 ;

The first and second ccnditions state that the veloclity potential
and the surface wave amplitudes, as seen from the meving system,
are small of order Be The speed ¢f the ship, cn the cther hand,
and the angulér velocity of its cege abcut the vertical axis of
the fixed coordinate system, are assumed t. be of ader zero., (It
will turn out, however, that @ = 0 - a not unexpected result.)
The relations (3.6) and (3.7) serve tc mnke precise our previous
assumpticn that the motion ¢f the ship is & small oscillaticn
relative tc the system o=x,y,Ze

We must now insert these developments in the counditions

derived in the previcus secticne. The free surface cinditions are

w:’—ﬁ i )




g

treated first., As a preliminary stcp we observe that

(348) 4, (xm,25¢58) = Bldy,(%,0,258) *+ mdy,(x,0,258) + oes)
S O L SRS

+ OO0 OO0 OOPSSEPIOIOSEESOIDIINOIOHY
= pd’lx(xs o, zst)"'ﬂzfnlélxy(& 0, zit)’*&’zx(x: 0,z;t)]

+ 9000000000000 000e )

with simiiar formuias fcr other quentitiss when they are evaluated
on the frec surface y = W o Here we have used the fact that W

is small of crder B and have develcped oach term in a Taylor series,
Consequently, the dynamic free surface ccndition for y = m arising

from (2.9) with p = 0 can be expressed in the form

8[{3'11"'32'!2"' eee] + %ﬁa[(grac‘. &1)2 + eeel

+ [so+le+...+z(uo+Bhi+...)]{6¢1x+52°n1¢1xy+¢2x)+.,.]
(39) .

- X(GQ+Bl0i+ooo )[pélz"az(“ld’lw%az)h"]
2 R
-[pélt.‘.p (‘lélty+¢2t)+".] = 0
and this ecnditicn is to be satisfied fur y = Os In fact, as

always in problems o¢f small cscillaticns ¢f continucus media, ths
bcundary ccnditicns are satisfied in genersal at the equilibrium

R+
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(3.12) ¥

position of the bcundaries. Upon equating the coefficlient of the
lowest order term to gerc we obtain the dynamical free surface

condition
(3.10) 8R1+(So+°tz)¢1x -‘90x$12-¢1t =0 for y = 0 ’

and it is clear that conditicns on the higher order terms ccuid

alsc be obtained if dosired, In a similzr fashion the kinematic

'free surface conditicn can be derived from (2.12); the lcwest crder

term in f yilelds this cocnditicn in the form:
(3e11) ¢1y - (so+ “52)‘1x Xy N, F O fory=0,

We turn next to the derivation of the linearized bcundary
conditiocns on the ship's hulle In viow of (3.6) and (3.7), the

transformaticn formulas (2.1l) cen be put in the form

(xt = x+6931(Y'Yé) -0,y 2

y-ﬂy1+pollz°p°3lx
when terms invelving seccnd and higher powers of P are rejected.

Consequently, the equaticn (2.16) of the ship's hull, up tc tcrms

in 32; can be written as follows

fol o
FUREE

ﬁ/




z"'BGZIR'aGll(Y‘Yé)'Bh[x"'ﬁoBl(Y’Yé)'BgalzaY’Byl"'ﬁollz'Bole] =0,
and, upon expanding the functicn h, the equation beccmes
(3.13) Z+P0, x=B8, (y-y! )=ph(x,¥)+sse = O,

the dots representing higher order terms in B We can ncw cbtain
the kinematic boundary ccndition fir the hull by inserting the
left hand side of (3.13) for the function f in (2.11); the result
is

wy =0
(3.14)
by = =8,(8p b )+x 1 +8,)x-6,, (y-y1)

when the terms <¢f zero and first order only are taken intc account,

It is clcar that thess ccnditicns are tc be satisfied cover the
domain A c¢f the x,y=-plane that 1is ccvered by the projecticn ¢f the
hull on the plane when the ship is in the rest positiin cf equili-
briume As was menticned earlier, it turns cut that W, = o, i.e.
that the angilar vciocity gbout the ze=axis of the ce.ge of the ship
in its ccurse rust be small cof first order, or, as it cculd alsc
be put, the curvsture cf the ship's course must be small since the
specd in the course is finite. The quantity sl(t) in (3.&) thus
yields the oscillaticn of the ship relative to the x-axise

. —— "
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It should also be noted that if we use z = ~fh(x,y) we
find, corresponding to (3.1l), that

1 b1p = =85(0n*hy) + (@) *0y )x - 0y, (y-73)

This means that A must be regarded as two sided, and that the
last equation is to be satisfied on the side of A which faces
the negative z-axis. The last equation and\zg:lu) implies that
g may be discontinuous at the disk A,
The next atep in the procedure is to substitute the develop=

ments with respect to f, (3.2) ~ (3.7), in the conditions for the

"shipts hull given by (2.18) and (2.22)s Let us begin with the

>
integral ]Ip n ds which appears in (2.18)s 1In this integral S
-

S
is the immersed surface of the hull, n is the inward unit nornal

to this surface and p is the pressure on it which is to be calecu=~

lated from (2.9). With respect to the o-x,y,z coordinate system
-

the equations of the symmetrical halves of the hull are

|
-y

S~ z = Hl(x,y,t;B) =

Spi= 2 = Hy(x,y,t3p)

n
L
la]

where




W

e

£ = B0 + BP0, (yoy} )b = (05 x¥y  Ju ] + 0(p3)
(3.16)
£, = =Boyyx + Oy, (y=y1) + 0(8%) ,

We can now write

o
/pﬁds=‘/pﬁldsl*/plnad.s2
S Sl 32

in which n, and n, are given by

» > » > >
H, i+H, j-k » ~H__ieH, j+k
n, = 1x 1y ; n, = 2x_ 2y .
\/1+H12x+H12y \’1+H22x+H2y2
We can also write
> [ >
fpnds=-pgfynds+]plnds=
8 S S
» » >
= ~pg fynds+ /plnlds, + /plnds2
Sy S2
where p,, from (2.9), 1s
(3417) p, = -p(%(srad £)2 + (stwz)g, - xub, - 4.1,
| u -
. : i .

v
LA

R,




Ir So is the hull surface below the xz=plane, the surface
area SO-S i1s of order f and in this area each of the quantities
Y, Hy, Hy is of order 8. Hence

> o » > 3 > 2
-fynds=-/'ynds+(1-+j)0([5)+k 0(p<)
S S

From the divergence theorem
»
- /Fy n ds = VH
So

where V is the volume bounded by S° and the xz-plane., With an

accuracy of order ﬁ3, V is given by

v =25 [ haa - /B(Y1+031x)dB = 28 [naa - 2p° /(y1+x631)hdx
B A L

A

Here A is the projection of the hull on the vertical plane when the
hull is in the equilibrium position, B is the eguilibrium water line
area, and L 1s the projection of the e¢quiiibrium water line on the
x~axise

Ir wl,w2 are the respective projections of the imnrersed

surfaces Sl’ 32 on the xy=-plane we have

v,
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] ppnd =1 (

j Pl(x,y,Hl;t)Hlxdw -jr pl(x,y,HZ;t)HZdea}

S W Wo
> ) t
. J{J. Py (x,7,Hy 5t )8y aw, - pl(x,y,Hajt)szdwg} .
W) Wa ]
- i
- k{ f Py (x,¥,Hyjt)aw; - f Py (x,5,Hy5t)dW, } . pE
Wy L) e
5%;
oy
Neithser Wy nor W, is equal to A. Each of the differences W,-4A, ; ,'??
W,=A is, however, an area of order B, From this and the fact that o
each of p, Hyy, Hly’ Hypo HZY is of order B; it follows that % : %
- QL _ >" ' e 3 ) E. é
S A

Wl 3
+ J{I[pl(x.y,ﬂlit)H1y~p1(x,y,H2;t)szJQé+O(5 )}
A

= k{I[pl(x:yaﬁlit)'PI(X,y,HZ;t)]dA+O(B2) } . e
A

It was pointed ocut above that g may be discondinuous on A.

Hence from (3.17), (3.2), (3.4)

Pl(xay’Hlit) = pp(dlt”sodlx)+ +0 (52)
(3.19)

Pl(x’yaﬁait) = Pp(dlt'sodlx). + 0(52) °

‘ . - e R U
o——
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Here the + and = superscripts denote values at the positive and
negative sides of the disk A whose positive side is regarded as
the side which faces the positive z-axis. If we substitute the
developments of H,_, Hly’ Hops Héy‘ and (3.19) in (3,18), then

colleet the previous results, we find

fp n ds = 1{p 2[[(h =05, ) (6,8 #lx) +(h 40,9 )8y =8 B4, ) ]dA+O(53)}
s

2pgpfnan - 2pgp®[(y,+x0,) Jhdx
+§ A L

(3420) +pp% [l (hg+6,,) ("1t'3o“1x’++‘hy'°11 ) (B8 o1 5) T1a8+0(5 )
A

i + )" 2
- PBJ[ (ﬁlt-soﬁlx) - ("lt'soplx) ]dA"’O(ﬁ ) B
A

[

The integral fp(?-ycﬁ)x % ds which appears in (2.22) can be
S

written
jp(?-yc?)x R ds = -pg jy(;-yc?)xﬁ as
) :

2 9 5
"'f pl(r-ycj)x n, ds,

81
- - o '
+ f pl(r-ycj)x n, 43, .
32
!,.—‘ » - -ﬁ’_g‘;"' '

e




If we use tho same procedure as was used above for the expansion

of Jp @ ds we find
S

» [ »

pr(r-ycj)x n ds

S
- » + - 2
= -i{pﬁit(y-yc)(flt'sodlx) -(y"Yc)(ﬁflt'Soflx) ]dﬂ*'o(ﬁ )}

L 4 \ . + - 2
+J Gpitx(dlt-sodlx) 'x(ilt-soflx) ]dA+O(p )}

pus frndi2ogs03)/(5-yy )b a

-ZPgB yllxhdx-ZPSB xahdx
bl - .yt -~ d
R (opp2 Ll ror ) (g ma ) Porng =0y, ) Uy ooy )1

\\ + 0(p3)
o

We now assume that the propeller thrust T 1s cf corder Ba

and is directed parallcl tc the xtaxis: that 1s

T=p2pin
|_ v .
P . e ~




| -
i' where 1! is tho unit vector along the xteaxise. We alsc assume that .

> 4o
[ T is applied at a pcint in the ilonzitudinal plane ¢f symmetry of sf’
. the ship # units below the center ¢f masse It then follows that
1 o
) > > PR
\ | (3.22) 7 = p2r1.+ o(p3) | il
- ) : . LA
' (/u‘iﬁ’ ‘ .
and ;
’ . > » . ™ > ii
| (3423) (Rp = R J)x T ==f§xT .
| = [ 8Tk + 0(p°) &
r ‘

The mess of the ship is of ordor s If wo writs M = M;p and &
r expand the left hend side of (2,18) in powers of P it beccmes
;’; » > g
. . 4 20 *
101,83 +11, 8%, +0(83) 1+ 30, 8%y, +0(p3) 1 kel 0(p3)]
(3e2) . . .
=g{pnds+T-MlBgJ o

,»”"

The expansicn of the left hand side of (2.22) zives
b > > \dd o
* 1[0(p2)1+310(p2) ] #k[15,%0;, +0(p)]

(3.25)

j > 3 » L >
\ = p(r-ycj)x n ds‘ + (RT-Rc)x 7
S

-

dow-e . ' i
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where 9131 is the moment of inertis cf the ship about the axis
which is perpendicular to the longitudinal plane «f gymmctry cf
the ship and which passes thrcugh thie center cf mass.

If we replace thc pressure’integrale and thrust terms in the
last two equations by (3.20), (3.21), (3.22), (3.23), and then
equate thc coefficlents of 1like powers of B in (3.24) and (3.25)
wé obtain the following linearizod equatiuns of moticn cf the ship.

From the first crder terms we find

(3026) é =0

o
(3+27) 208 :{ﬁhd.’x = M, g

(3.28) - { xBhdi = 0

(3.29) [ Uhygms ) = (Brgmscdy ) 1an = 0

(3.30) { [x(ﬂlt-soflx)+-x(;§}t-§0¢lx);]dA =0

(3.31) { [(Y-yé)(tflt-soﬁlx)+-(y-yé)(ﬁlt-sollx);]dﬂ =0

or by (3029)

(332)  f tythyy ey ) oy (Byyes by ) Nah = 0
‘x

e
Kl
m? .
- - 1 E Y
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From the second order terms we find
. + -
, may 2 pfl(n05 ) (Bypos by ) 0t ) (A magfy ) 10T
- s = pl{[hx(dlt'so'glx)uhx('{lt'so’{lx)-)dAﬂ‘
. o f '
' My, = "2P3L(V1+"°31)hc1x
i
+P {[ (hy+°ll) (ﬁlt-SOle)*"*(hy-ell) (dlt’soﬁlx) ‘]dA
(3e34) = -apg{(yl+x03l Yhdx
! +P{[hy(¢lp'so'!lx)++hy(’!lt'so"(lx)-]dA
] ] ' \ f .
.131931 = -ZngBI‘K(y-yc)hda-Zpgylehdx
: -2pg® ! x2hax+ /T
31y,
+Pl[x‘hy+v (dlt.soﬂlx)*-*'x‘hy-ell ) (dlt-s(}’{lx)-]d‘k
4 -Pg [(3=38) (b ~0, ) ,{l't..o,flx ) Y4 (y-y1 ) (0 49,7 ) (B =8 6y ) TNd.
or by (3+30), (3431)
!
z |
5%
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Bttt ians Attt aashain

131331 = -2p3031£ky-yé)hdA - Zpgyl{xhdx
(3.35)
2
-293031{1: nax + 41

*p{[ xh=(y-y} M 1 (By =8 By )T+ (4 pos By ) 144 o

Equation (3.26) states that the mctiin in the x-direeticn is
a small cscillaticn relative tc¢ a meticn with uniform speed
Sy = ccns'te Equaticn (3.27) is an expressicn of Archimedes!
law: the rest positicn ¢f equilibrium must be such that the weight
of the water displaced by the ship just cquals the weight of the
ships The center cf buoyancy of ocur ship is in the plane of sym-
metry, and equatiocn (3.28) is an expressicn of the second law cf
equilibrium of a flcating body; namely that the center of bucyancy
for the equilibrium positicn is on the same vertical line, the
y'=axis, as the center cof gravit& ¢f the ship,

The function dl must satisfy

Jlxx + dlyy + lez =0

in the domain ﬁ = A where D 1s the half space y < 0, and A is the
plane disk defined by the prcjecticn of the submerged hull con the
xy+plane when the ship is in the equilibrium positicne We nssume
that 4 intersects tho xze-planes The bcundary conditicns at oach

side of A are

e




B, = 8, (B =0, )+ (to 40,0 )x = 61y (y-y!)
c
(3436) “
Br," = =8, (n 4050 ) + (0 40,0 )x = 6 (7oyL)

The boundary conditicn at y = 1s found by zliminating ny from

(3+410) and (3.11)s Since w,. = O thesec eguations are

o]

gy * 8 by, = £y =0
dly 8Ny tT Wy =0

and they yleld

2 -
(3.37) s = 25P1xt * Bf1y thipy = O

for y = Os The bcundary conditicns (3.36) and (3.37) show that
dl depends on ch(t), Oll(t) and GZl(t). The potential problem
can theoretically be sclved fcr £ in thé form -

£y = £10x,7,2,85 @y (£),0,;(t),0,,(t)]

withcut using (3.29), (3.30), (3.32)e The significance cf this

has already been discussed in Sccee 1 in relaticn tc cquaticn (lall4)e

The gencral procedure t: bec fcllowed in sclving all prcblems was

all discussed there,
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The general potecntial problem defined above will be the sube .
Ject ¢f a separate studye The remainder of this paper 1s ccncerned ‘f%ﬁ%
with the special case of a ship which meves along a straight course .
into waves whose crests are at right angles t¢ the ccurses For

this casc there are surging, heaving and pitching mctions, but

6, =0, ©

1 2

L

3
= 0, (=0 and the potentisl function £ 1s an even e
functicn of ze Under these conditicns the equaticns of moticn are 2

mere simples They are ' ‘ ' ;ﬁi

(3.38) M8, = Zp‘{hx(tflt-soﬂlx)d!: + T

(3.39) my -2pgy1{ hdx-2p3031,£mdx+2p‘{hy(ﬁl‘t-soﬁlx)d“m 7

(3.&0? 131031 = -2p5031]ky-yé)hdA-2pgy1{;hdx
A

-293931] x%hdx + AT
L
+2p{ [xhg=(y=y 3 )b, 1 (£ ¢ -8 F1 4 )die
It will be shown in the next sectiun that an explicit integral

reprosontation can be fcund for the correspunding potential functicn

and that this leadls tc integral represcntaticns for 8y, andv031.
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4e Method of solution of the problem of pitching and heaving of &

ship in a sea-way having normal incidence.
In this section we derive a method of solution of the problem

of calculating the pitching, surging, and heaving moticns in a sea-
way consisting of a train of waves moving at right angles to the
course of the ship, which is assumed to be a straight line (i.e.

w # 0)s The pfopeller thrust is assumed to be a constant vector.

The harmonic function ¢, end the surface elsvation W,

' therefore satisfy the following free.surface conditions (ef. (3,10)

and (3.11), with W, = 0):

Biig * 85dy, =y =0

(1{..1) at y 0.

by = syx t My =0

The kinematic condition arising from the hull cof the ship is

(L‘JZ) ‘].z = sohx [

Before writing down other conditions, inecluding conditions

at o0, we express 61 as a sum of two harmonic functions, as follows:

(4e3) ¢, (x,7,25t) = % (x,7,2) +A(x7,2;),
u v _
e ' ’
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Here 15 is a harmonic function independent of t which 1is also an
even function of z. We now supposec that the motion of the ship

is a steady simple harmonic motion in the time when observed from
the moving coordinate systom o=x,y,2ze (Presumably such a state
would result after & long time upon starting from rest under a
constant propeller thrust.) Consequontly we interpret Xa(x,y,z)
as the disturbance caused by the ship, which therefore diecs out at
0 ; while'Xl(x,y,z;t) represcnts a train of simple harmonic planc
waves covering the whole surface of tiic water. Thus'x1 is givoen,
with respect to the fixed coordinate system 0-X,Y,Z, by the familiar

formula

2
8
T o

X;=¢Ce sin (6t + o= X + p),

with 6 the frequency of the waves. In the o-x,y,z system wec have,

thercfore:

2
g— y 62 8,
(Lelt) Xl(x,y,z;t) =Coe sin [-g- x+ (6 + : )t + ple

We observe that the frequency, relative to the ship, 1s increased
abecve the value 6 1if 8, is positive « 1,¢e 1f the shiip is heading
intc the waves = and this 1s, of courss, to be sxpcctedes With this
choice of Xl, it 1s easy to verify thét‘xb satisfies the fcliowing

conditicns:
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1

2 =
(4e5) aoxoxx + gxby =0 at y = 0,
obtained after eliminating w, from (4el), and

(4eb) . X%z = s h, ona4,

with A, as above, the projection of the ship's hull (for z > 0)
on its verticcl mid-section. In addition, we require that'Xdo 0
at ® .

It should be remarked at this po;nt that the classicel
problem concerning the waves created by the hull of a ship, first
treated by Michell [8], Havelock [2], and many others, is exactly
the problem of detenmining'xo from the conditicns (L4.5) and (4e6)e
Afterwards, the insertion of ¢; & X, in (3.38), with 51 =0,
¢1t ® 0, leads to the formula for the wave resistance of the ship =
i.c¢ the propeller thrust T is determined., Since AN and 03 are
independent ¢f the time in this case, onc¢ sees that the cther
dynemical equations, (3.39) and (3.40), yield tho displacement cf
the ce.g. relative tc the rest positicn of equilibrium (the so~called
heave), and the longitudinal tilt angle (called the pitching angle),
Howcver, in the literature cited, the latter two quantitiecs seem
tc be tnken as zero, which implies that appropriate constraing
forces woculd be needed tc hcld the ship in such 2 position reletive
to the water. However, the main quantity cf interest is the wave
resistance, and it 1s not affected (in the first ordcr theory, at
least) by the heave and pitch. . -
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' We proceed to the determinaticn of Xo, using a method differ=
. ent from the classical methud and fcllowing, rather, a ccursc which
it 1s hcped can be generalized in such a way as to yield sclutions
in more difficult casess
Suppose that we know the Groen!s function G?(ﬁ,n,;;x,y,z)
such that G* is a harmonic function for < 0, ¥ > O except at

(x,7,2) where it has the singularity 1/r; ard G" s tisfies the
boundary conditions

(4e7) Ggg + k6" =0 on M

[[]
o

3
‘l n
G; =0 on

X
i
o

where k = g/s2 . Lot Z: denote the halfeplane W= 0, £ > O;
and let §2 denote the half-plane & = 0, W< 0o Green's fcrmula shows
that

4 Lp'rxo = - Ifxlq::dgdg + ff qu G*dgd{ '-gg[ xoza*dgd‘l 'o
e 33

Then, since

- éj‘ X 0, a8z +_£ { Xon@ dB2K = %f/ (X Gge = XD“ 6")dgay

Z:
= %g Br (L0p = X g0")agax

z 0 ’
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we have an explicit representaticn ¢f the sclution in the form

Xolxy,2) = = %/f 'xo,‘o*dgd\, » or
Q

8
(448) xo(x,y.z) a s E% jf ht(t,u)G*(g,q,o $X,7,2)dEdy,
A

upon using (l1.6),

In order tc determine G* consider the Green's funetion

G(&,,15%,7,2) for the half space m < O which satisfies

G§§+ kG"l = 0

on = O.' This function can be written as

1 1
6= T TT, v
where
i 1
rl = T ———
Y (e -x)z"'(n-'y)?:(&-z)?
i i
r
2 Y @)y e (zon)2
i ‘ ' & P .o
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and g 1s a potential functicn in w< 0 which satisfies

+ kg = 2k o= 1

g )
" v Yig-x)2+yo+(5-2)°

£z

on 1= 0 The wellekncwn formula

o) »
2 1 PY3 (pV(e=x)2 2
2k == L3 = 2k [ pe®?JT [pV(E=x)+(Z=2)"]dp,
3
T Vg Zey2e(3-2)2 { °

in which the Bessel function J’o can be cxpressed as

n/2

JO[p\/(g-x)z*(z-z)Z] =% f cos[p(Z-x)cos O)ccslp(Z-2)s1ine}ae,

o
allows us tc write
w /2
85’ + kg,‘ = % J fpepy cos[p(& =x)ccs@]cos[p(¥=2)sin®)aedp
? o o

for W= 0 and y < 0 It is now easy tu sec that
o w/2
8“ + kg,.i = -’%—] f pep(y”')cos[p(g-x)ccsé[p(&-z)sinO]dep
o ¢

is a potential functicn in w < O which satisfies the bcundary
conditicne An interchange of the order of integraticn gives




wi2 ©
8py tkay, = % / dﬁﬂnf p cos[p(Z=z)sin g),P[(Y""Q)*Ciié!;-x)cow]
o o]

where Mo denutes the real part. If we think of p as a cumplex
varicble, the path frocm O to o in the last result can be replaced
by an equivalent path L:

/2

Lk pl(ym)+1(&=x)cos 0]
Sé€+kgn = = fdoﬂc{p cos [p(%=-z)sin®le ap .
o

Since the right hand side of this differcntial equation fcr g is
expressed as a superpcsition of exponentiels in ¥ and n, and
since some freedom is allowed in the choice of L, it is evident

that

w/2 pl(y+n)+i(§-x)cos 0] )
g = % / dgfh / P cos[g(;-win OIO dp
o L kp=p©cos™ @

provided L can be prcperly chosen, The path L, which will be
fixed by a ccnditicn given below, must, cf ccurse, avcid the pcle
at p = k/cosaé.

It can ncw be seen that the functicn G*(;,Vz,z;x,y,z) =
G(E,M%5%,7,2) + G(E,Mp%5X,Y,=2) satisfies all cf the ccnditicns
imposed cn the Greon's functicn orployed in (4.8): the suim on the
right has the pr.per singularity in v <0, %0, it satisfies the
boundary ccnditicn (4.7) and




G;(z,n,z;x.y,z) + G;(ton,zsx.y.-z)

is 2zero at & = 04 Therclfcre

c—*],;_0=2[ —L _1
V (g-x)2+ (n-y)znz

Y (g-x) +(n+y)2+z?

w/2
pl(y+n)+i(g-x)cos 8] |
+%£ /domfcos(pzsino)e v dp Frxeos .
o L k=p cos® ©

The substituticn of this in (4.8) gives finally

s
X (x,7,3) = "27(:‘.”*‘ (E,w)f 2 _ dedy,
° A ¢ TE-X)Z"’(‘Q y)‘;""'z2 V(E x)2+(vl+y)!
pl(y+v) +1 (g «x)ccs0)
dp_ }dtdv-

2 ]fh (:,'z){ ! do&f&ﬂﬂz—i’ﬁ‘}°

4 ke«p ccs™ @

A cocnditicn inposed cn Xo(x,y,z) is that X, (x,7,2) » 0 as x & +x

This conditicn 1s satisfied if we take L tc be the psath sh wn in

Fig. uolo

—— ~ ‘. -
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Fig. Ll-olc
The Path L in the peplane

The function "l is given by
2 2 e
o = g ox 51

ad therefore

2
5x
g 362

2 [}
(4e9) #iy = 8,6y, =Cle  cos l:%-’-‘ + (6+—i-::—)t+p]- 8 Xox

If this 1s subsbituted in the equaticn fer the surge we have

2 .
53 [2 s 62

: o)
Ms, = 2906[/ Lo € cos -g—x- + (6+ -g-—-) t+p] dxdy
A

- 2ps /hx.xax dx dy + T
A

o
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The last equation shows that in order to keep 8, bounded for all t

we must take

(4420) T = 2ps, fAf h, X, dxdy
where
| -8
(X,7,0)2= 2 (Bex)-  ___ (&=x)
xox Efjh!(ls‘l){ > YA » ) }dgdn
A [(£=x)+(n~y)°] [ (€=x) +(mty)“]
oy w/2 Pl (y+n)+1(£-x)coso] |
+ F‘l/jhe((,n of aof [im cosge - dp dgdn.
A

L g=s, P cos

Equation.(u.lo) gives the thrust neceasary to maintain the speed 8.,
or 1inversely it gives..the speed 86 which corresponds to a given
thruste The integral in (4.10) is called the wave resistance
integral, As one sees, it does not depend on the seaway. The
integral can be expressed in a more simplc form as follows,

The function‘xbx(x,y,o) is a sw: of integrals of ths type

[bgtem) £(g w5, ) dgame
A

If an intcgral of this type is substituted in the wave resistance

integral we have

—

e

e




fj f.[ hx(x’y)h;("“)r(‘l‘ust) dpdwdxdy = I
A A

say. This is the same as

JI /1R (&mIn, (x,3)f(x,7;8,m) dxdyakan= I
A A

and we see that I = 0 if

LEMix,y) = = £{x,¥iEM) -

.

Therefore

T = -u-?;—//f h (x,7)h,€,n) £ dbdndxdy

where
w/2

(y*n)
£, = f doﬁféﬂl cos® ep v cos[p%-x) cos O] dp |

g-s p cos

(o]

S:lncem, /is zero except for the residue from the intogration along

L
the semiecircular path about

g k
=
2 2 2 »
socos (*) cos" 9
— —
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we find from the evaluation of this residue that

2 n/2

1"1 = '-;-E— f 36039 e

° o]

26

k(y+n) sec
cos [k(Z=x) cos 0] dé ,

Now if we define

2
P(®) [/ hx(x,y) eV 52279 155 (kx sec 0) dxdy
A

2
Qe) = f/’ h (x,y) oY 86¢7@ J4p (kx sec ©) dxdy
1 )

we e¢an write
2 2 .2 3
T-Qg-f (P2 + @°) sec3 @ 4o .
LE I

This is the familiar formula of lMichell for the wave resistances,
The surge is given by

2
S 2 s 62
s, = 2pC6 f/h o 8 [Qx+'(5-o—°_)t+p]dxdy
(g6+s,6°)M, x g g
A

Hereafte_;' we will suppcse for simplicity that thero is no
coupling between (3.39) and (3.40), sothat thdx = 0, The
L
substitution of (4.9) in (3.39) there gives the following equation

for the hesave,
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| &y
Ml.Y.l"[ZPs /hdx]yl = 2pC6 ffhye € cos
L A

2 s 6
%(6-’-2—-”41: dxdy

-2p s, /{ %x dxdy

The time independent part of ¥y, the heave component of the trim,
we denote by y{,‘ it is given by

(4o11) | (¢ [ b ax)y] = -s, //hyxox dxdye
' L A ,

y; is the vertical displacement of the center of gravity of a ship
moving in calm water from its rest positions The integral on the
right hand side of (4.11) is even more difficult to evaluate than
the wave resistance integral. As far as the authors are aware,
the integral has not appeared in the literature.

The response of vy to the sea is given by

2 ,
[ 4 2 2
6%x 6
3pCo Uhye € cos < + (o+so—é-) t+p] dxdy
LA A
’1' = .
2
2pg [ hax - M (o )2
P8 / 1 g

For the case under consideraticn, the theory predicts that rescnance

in the heave occurs when

¥
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The equation for the pitching angle is

. ' 2
131031+2pg[/ (y=y})hda + / X hdx] ©3
A L

2

2 s 6
v 6 O
= BpQG {,[xhy--(.,-:;r"sﬂ)hx]cos{—s-zS +(6*—8—-)t+p} dxdy

+ 47 - 208, f(xb =(3-y)n] X, da
A

The time independent part of 031, 03;, is given by
3
2pg [1'-\[ (y=y})hda + {xah dx] ®3

1)a.] A, A .

= &7 - 2p8 { [xh, (-3}

= (Z'-yé)'r - 2ps, f [xhy-yhxlxox di.
A

The angle 9;1 is called the angle of trim; it is the angular dis-

placement of a ship which moves witli the speed s, in calm water,




The response of 031 to the sea 1is

1
y 2
' 62x s06 o
- - ammsonasy om—— |
2906 [f Lany=(3-y3 gl cos {&E + (6-2—)ewp axay |
ot o A , ]
31 8 62 2 ¢ o
2 o) :
2pg [.A/ (y-y! )hdA-!-{ x hdx] - 131(6+—g——) ;
and we see that the theory predicts resonance when §’.
4 62 / 1/2 '
6+ = (y=y!)hdA + ,/ x2hdx]~ . '
& {ﬁ [A LA / | ;
¢
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